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Abstract--The plane problem for dissimilar materials composed of three isotropic homogeneous
wedges with arbitrary angles under surface tractions is analysed using the theory of elasticity. The
order of singularity in stress fields near the apex of a three-phase bonded structure is investigated.
It is first demonstrated how the order of stress singulanty varies with several combinations of
material with different properties in cases where the angles of wedge are of rr/3-rr/3-rrj3 and rr/2­
rr/2--rr/2. When the materials and wedge angles of the side regions are identical, the order of stress
singularity is additionally studied in detail. with the wedge angle of the intermediate region varying
in cases where the total angle of the bonded wedge geometry is fixed and not fixed. A method
reducing the stress singularity in a two-phasc bonded struet ure is finally proposed.

I IY1RODLCTIO"

Many investigations on stress singularities have heen carried out [Williams (1952), Bogy
(1968, 1970, 1971a, b), Hein and Erdogan (1971 ). and others]. Williams (1952), for single
material wedge subjected to extension under different houndary conditions (free-free, fixed­
free and fixed--fixed), showed the variation of the minimum real part of the eigenvalue with
the vertex angle. He demonstrated that a stress singularity occurs with vertex angles between
1800 and 360 in all boundary conditions. Bogy (1968, 1970) studied stress fields in bonded
elastic quarter planes under surface tractions. He found that stress fields are of the order
r- I

, where 0 ::; I. ::; 0.41. under certain conditions. Bogy (1970) also clarified the conditions
of the loadings and the material combinations in which the singularity was either logarithmic
or nonexistent. Furthermore, Bogy (1971 a, b) derived an eigen equation to obtain the order
of stress singularity near the apex in a two-phase bonded structure with arbitrary wedge
angles and investigated the stress singularity near the crack tip terminating at the interface
of a bimaterial composite by using the two Dundurs composite parameters r:i and [3 (Dun- .
durs, 1969). Dempsey and Sinclair (1979) presented two systematic methods of expanding
the determinant for the N-material wedges, and Theocaris (1974) provided a formulation
for the case of a full plane composed of many elastic wedges with arbitrary angles. Pageau
et af. (1994) examined the order of stress singularity for all perfectly bonded or a disbonded
two- and three-material junctions using Theocaris' formulation provided for N-materials.
In all cases, the singularity depends on the wedge angles and the elastic properties of
materials.

Koguchi et (II. (1995), derived an eigen equation for investigating the order of stress
singularity near the apex in a three-phase honded structure composed of three isotropic
homogeneous wedges with arbitrary angles using the Airy stress function through the
Mellin transform (Sneddon. 1951; Davis, 1984). Then, four Dundurs composite parameters
(Dundurs, 1969), :;(1" f)12 for materials I and 2 and :;(21, [3,) for materials 2 and 3, were
introduced for representing six elastic constants for the bonded structure with three pairs
(Gj,I'I), (G 2, 1'2) and (G,,r,) of shear modulus and Poisson's ratio. It was concluded that
the order of stress singularity could be reduccd hy a suitahle arrangement of the bonded
order of materials in thc three-phasc bondcd structurc.

tTo whom correspondencc should be "ddre"ed
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Fig. 1. Two methods for reducing the order of stress singularity for a two-phase bonded structure.

The order of stress singularity can be reduced by varying the elastic properties and the
wedge angles of two materials in a two-phase bonded structure. We consider that the
reduction of the order of singularity in the two-phase bonded structure will be achieved by
employing methods (A) and (B) shown in Fig. 1. So, we examine how the order of stress
singularity varies with combinations of the material properties and the wedge angles in
methods (A) and (B). In particular, since the elastic property of the intermediate material
and its wedge angle greatly influence the magnitude of the order of stress singularity in the
three-phase bonded structure, the emphasis here is placed on investigating the order of
singularity in the variation of the elastic property and the wedge angle of the intermediate
material.

In this paper, we first consider the cases shown in Fig. 2, where the third region with
wedge angles <P3 of n;3 and nl2 is bonded to the two-phase structure with wedge angles of
(<PI, <P2) = (nI3-n/3) and (n/2-n/2). where <PI is the wedge angle of the first region and <P2 is

y

Interface(1-2):B 12

: Shear modulus
v : Poisson's ratio
cp : Wedge angle
n(r) : Normal load
t(r) : Shear load

Fig. 2. Analytical model for three-phase bonded structure under surface tractions.
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that of the second region. Variations of the order of stress singularity are shown on the (X23

f323 plane for several material combinations. Secondly, the case where materials of both side
regions are identical is examined. The relation between the wedge angle ({J2 of intermediate
material and the order of stress singularity is investigated in cases where the sum of bonded
wedge angles is fixed (411 + 412 + 41, = fixed) and where the wedge angles ({JI and ({J, of both
side regions are equal and fixed (({JI = ({J3 = fixed). In addition, a relation between the
wedge angles of both side regions and the order of singularity is examined in cases where
({JI + ({J2 + ({J, = fixed and ({J2 = fixed. Results of Williams (1952) for a single wedge subjected
to extension under several boundary conditions, and those of Bogy (1971a, b) for two­
phase bonded structure subjected to surface tractions and for problems involving a crack
in a two-phase bonded full plane agree well with the results in our investigations.

A method for reducing the stress singularity in a two-phase bonded structure is
proposed by utilizing the results obtained for the three-phase bonded structure. Further­
more, a example applying the method to a copper-alumina composite is presented.

2. DERIVATION OF THE EIGEN EQUATION

Since the derivation of the eigen equation for the three-phase bonded structure is
described in detail in a previous paper (Koguchi et al., 1995), only essential results used
hereafter are shown in this section.

Constant In,) is denoted by Poisson's ratio I',) as follows:

{
4( I -1',,) for plane strain

111,,= (<5=1,2,3).
4:(1 + 1",) for plane stress

(1)

Four Dundurs composite parameters: (Xu and f312 for materials 1 and 2, and (X23 and f323 for
materials 2 and 3, are used in the eigen equation with six elastic constants.

where

kl2Jn2 ~Jnl
)'1'=----
. - k l2 ln 2 +Jnl '

k 2 ,Jn, - In 2)'" = _--
.... k 23 Jn, +Jn 2'

f3 _kn (Jn,-2)-(Jn 2 -2)
2, - k n Jn 3+ Jn 2 '

(2)

(3)

The subscript of elastic constants represents each region. The complex variable p is defined
by

p=-s-I=~+ilJ, (4)

where s is a parameter of the Mellin transform, ~ is the real part of p-Re(p) and IJ is the
imaginary part of p-Im(p).

The eigen equation for the three-phase bonded structure deduced by expanding and
arranging the determinant (12 x 12) of the coefficients in the simultaneous equations
obtained from the boundary conditions of stress and displacement can be explicitly ex­
pressed as follows:

S( ({J h 41 2, ({J,. :x 12 • fJ I 2. )' 21. fJ 21 ; p) = A ({J I , ({J 2, ({J,. (X I 2. f3 I 2, :X2, , fJ 2, ; p)

+ B( ({J I • ({J 2, (P 1 • :x I 2 ' fJ I 2 ,)'21 • fJ 2, ; p) +C ({J 1, ({J 2' ({J, , )' I 2, f31 2, (X2 3, f3 2 3 ; p)
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This equation (5) will generally satisfy the following relation.

The order of stress singularity is generally given by the real part of the root of
S(CPI, CP:, CP" Cl I :, f3 12 , CI:" f3:, ;PI) = 0 existing within 0 < Re(p) < I (stress (J has the relation
of (J x 1'" I with root p). Otherwise, the root with logarithmic singularity (Bogy, 1970,
1971 a) is obtained from satisfying the following equation:

(7)

The root will be represented as PI' Furthermore, when the eigen equation has multiple
roots within 0 < Re(p) < L the root having the smallest real part will be chosen as PI'

, NUMERICAL RESCLTS

3.1. Loci/iir the rOOf on fhe CI:,-f3:lplane
The influence of the bonded wedge angle on the stress singularity is investigated in two

cases of angles 7[/3--7[13-7[/3 and 7[.2 7[!2 7[!2_ Elastic constants for each material are within
the following ranges.

(8)

The values of Dundurs parameters, X12' f3 12 , X21 and f32l' defined in eqn (2) (see Fig. 3) fall
within a parallelogram (Bogy, 1970) with the values of Cl I:,X21 between - I and I. Since the
domain corresponding to plane stress is included within that corresponding to plane strain,
the results of plane stress are not shown here.

After a fixed point on the Cl12-fi 12 plane from the elastic properties of materials I and
2 is assigned, the loci for root PI are drawn on the X21-f3:, plane. That is, root PI in the case
where material 3 is bonded to the two-phase bonded structure of materials 1 and 2 is
examined. In the present study, roots having relationships of (,XI:, f31:) = (0.875,0.25) and
(-0.875. -0.25) are searched; these will be referred to as cases I and 2. Also, the roots
obtained for the two-phase bonded structure of materials I and 2 are plotted as the loci
for P'I on thex l2-f3 12 plane.

Figures 4 and 6 show the loci for P'I plotted for the two-phase bonded structures of
wedge angles lL 3-n3 and 7[/2-n:2, respectively. Figures 5 and 7 show the loci for PI for the
three-phase bonded structures n:3n/3-n 3 and n/2--n/2-7[/2, respectively. In Figs 4-7, PI -->

LOO (P'I --> LOO) noted in the Cl2,f321 (X I2/i1:) plane represents the loci for the root defined
by eqn (7) exhibiting logarithmic singularity.

3.2. ROofs/iir honded wedge \i'ith (PI = cP, and CPI + CP2 + cP, = .fixed
It is demonstrated here how the order of stress singularity varies with the wedge angle

CP2 with the condition (ClI2' f312' X2" fi 2,) = (x, f3, - x, - f3), i.e. the mechanical properties of
materials I and 3 are identical. The stress singularity is investigated under the conditions
(y. I:, PI:' y.2dJ: l ) = (0.85,0.30, - 0.85. - 0.30) and (- 0.85, - 0.30,0.85,0.30). The former
is referred to case I and the latter to case II. Case I is the condition that the bonded structure
has the relation G I = G,» G:, and case II has the relation G I = G, « G2 • We suppose that
the sum of the wedge angle is fixed and the angle CPI is equal to CP,. Roots in three
configurations: half-planes, three-quarters-planes and full-planes are searched in detail.
The variations of all the roots P existing within 0 < Re(p) < I with the wedge angle !fJ2 are
shown in Figs 8-10. Solid and broken lines represent real and imaginary parts of complex
roots, respectively. In Figs 8-10, the left end (cp, = 0 ) corresponds to a free-free single
wedge with angle CPI+!fJ" and the right end (CPI+!fJ3 = 0) with angle (P:. The roots then
agree with the ones obtained from eqn (15) of Williams (1952).
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Fig. 3. Parallelogram on (a) ~"Ii" plane for materials I and ~. (b) ~:' Ii" plane for materials 2 and 3.
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Fig. 4. Loci for roots" = 1", for two-phase bonded structure of 'P, = 'p, = 1[/3.
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Fig L0C1forr<lotsl'=1'1 ofS(,,o,,(,>,(P,,x./i, -x. -!J;I',)=Ofor'PI=<p,='P1=n/30f(a)
case 1. (bl case 2.
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Fig !l Loci for roots I' = 1'1 for two-phase bonded structure of 'PI = 'P, = n/2.
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Fig. 7. Loci for rools I' = 1'1 of S(Ip,. ',0 •. qJ,. ~. Ii. ~. fJ, 1',) = 0 for 'P, = qJ, = qJ, = nl2 of (a)
case I, (bl case 2

3,3, Roots for bonded \ledge lrith <PI = <P, = fixed and qJ\ + qJ2 + qJ,,;; 2n
A relation between roots and qJ2 is investigated with varying the wedge angle qJ2 from°to 2n while holding qJl = qJ, = fixed, The results in wedge angle of <PI = qJ, = n/6, n/2,

2n/3 and 5n/6 are demonstrated in Figs 11-14. The combinations of material properties
are the same as used before, The left end (qJ2 = °)in these figures corresponds to a free­
free single wedge of angle qJ\ + qJ, and the right end (qJ\ + qJ2 + qJ, = 2n) to a bonded wedge
occurring at a semi-infinite crack at the interface of materials I and 3. The roots in the
condition qJ2 = ° agree with ones obtained from eqn (15) of Williams (1952),

4. DISCUSSION

4.1. Loci/or roots PI plotted 0/1 the ':I. 21-P21 plane
The ':I.n-P21 domain does not always form a parallelogram in case 1, When

(':1. 12 , P12) = (0,875,0,25), Poisson's ratio 1'2, from eqn (2), exists within 0,286 ~ V2,;; 0,318
(0,4 ~ V2 ,;; 0,433 for plane stress), Hence. the values of ':1. 23 and P23 fall within a trapezoid,
as shown in Figs 5(a) and 7(a).

The conditions (':1.23, P23) = (- 0.875. - 0.25) in case I and ((1.23, P23) = (0.875,0.25) in
case 2 mean that the mechanical properties of material I are the same as those of material
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Fig. 8 Variations of roots p of S(<PI' 'p •. ~ry,. '1.. Ii. - '1.. -Ii; p) = 0 existing in 0 < Re(p) < I with
varying (Pc when a half-plane consists of bonded wedges and elastic constants have the relation (a)
l-(~.Ii. -~. -Ii) = (085.0.30. -085.·(30)-G I = G,» G,. (b) 1I-('1../i. -'1.. -Ii) = (-0.85,

- 0.30. O.8S. 11.30) '.. G I = G, « G,.

3. The condition (CXl1, #11) = (0,0) in each case indicates that the properties of materials 2
and 3 are identical. The roots then agree with ones obtained from eqn (19) of Bogy (1971a).
Moreover, it is found from equation (6) that the condition «(X11, /323) = (0.875,0.25) in case
1 and «(X2J, /311) = (-0.875, -0.25) in case 2 yield the same roots p.

Case 1 corresponds to a two-phase bonded structure with the relations 0 ~ VI ~ 0.5,
0.286 ~ ['2 ~ 0.318 and G] » G2 • and case 2 to that with 0.286 ~ VI ~ 0.318, 0 ~ V2 ~ 0.5
and G] « G2 . When CXl1 = I (k 23 -+ x). roots agree with ones in the fixed-free single wedge
[reported in Williams (1952)] with the angle I.{Jl' However, roots at (X23 = 1 in nI2-nI2-nI2
also yield ones in the two-phase bonded structure of materials I and 2 (see Fig. 7), because
the following relation always holds.

(
n n n )Si' 2' '2' ± funs. ± 0.25. I, /32, ; 0.7753 = O. (9)

It can be seen in the CX2,1-fJl1 plane that root p] becomes larger ascx23 ~ I and smaller
as (X23 -+ - I in case I. That is, the order O(rl" ]) of stress singularity tends to increase when
G] = G, > G2 , and to decrease when G] = G, < G2 •

As seen from Fig. 4, the stress singularity does not occur in the two-phase bonded
structure (nj3-nj3) of cases I and 2. However. when material 3 with nl3 is bonded to the
two-phase bonded structure of materials I and 2, the stress singularity occurs almost in the
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Fig. 9. Variations of roots p of S('P" 'P" 'P). ~. Ii, - Yo, -Ii: p) = 0 existing in 0 < Re(p) < I with
varying 'P, when a three-quarters-plane consists of bonded wedges and elastic constants have the
relation (a) I-(iX. {3. -'Y.. -{3) = (0.85. 0.30. -0.85, -0.30)-G, = G,» G" (b) II-(iX, {3, -'Y.,

-/J) = (-0.85, -0.30.0.85.030) - G, = G) « G,.

domain of the polygon in the r1.2,-f32' plane (see Fig,S). Root PI in the two-phase structures
(nI2-nI2) corresponding to cases I and 2 indicated in Fig. 6 is 0.7753. Root PI in the three­
phase structure (nI2-nI2-nI2) becomes small in comparison with 0.7753 regardless ofelastic
properties of material 3 (see Fig. 7). This is attributed to the increase of total angle of
bonded wedges by bonding material 3. It is found from the current result, the results of
Bogy (1971a), and Hein and Erdogan (1971), that the order of stress singularity becomes
larger as the total angle of the bonded wedge increases. Consequently, the stress singularity
in the two-phase bonded structure cannot be reduced by bonding material 3.

4.2. Locifor roots p for structure with qJl = qJ, and qJ\ + qJ2 +qJ, = fixed
Root PI yielding the most dominant factor for the stress field in the case of

GI = G3 » G2 attains a minimum at qJ2/2 ~ 68.5 in the half-plane, at qJ2/2 ~ 64° in the
three-quarters-plane and at qJ2/2 ~ 150' in the full-plane. Furthermore, the root PI attains
a maximum at qJ2 = 0' and qJl = qJ3 = 0 in all the cases of GI = G3 » G2; the order of
stress singularity yields a minimum at both ends of the range as shown in Figs 8(a)-1O(a).
When GI = G3 « G2, root PI attains a maximum at qJ2/2 ~ 81.5 c in the three-quarters-plane
and at qJ2/2 ~ 95' in the full-plane, and yields a minimum at both ends of the range as
shown in Figs 8(b)-10(b). Therefore, the order O(r/,-I) of singularity in the three-phase
structure becomes larger in comparison with that in a single wedge structure when the
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varying <p, when a full-plane consists of bonded wedges and elastic constants have the relation (a)
[-(1.. fl. _.. 1.. - fl) = (0.85.030. -0.S5. -0.30)· G, ~ G, » G,. (b) 11-(1.. fJ. -:to -fJ) = (-0.85,

030. O.SS. 0.30) - C = C, « C,.

intermediate material in the three-phase structure is softer than both side materials. On the
contrary, it becomes smaller when the intermediate material is stiffer.

From the above results. we are able to make an effective way of reducing the order
O(rl'" I) of the singularity by examining the relationship between the wedge angle <PI (or
«3) of both side materials and roots p.

In the case where the order of stress singularity attains a maximum at <P2/2 = 68.5° as
shown in Fig. 8(a), the variation of root p with the wedge angle <PI is shown in Fig. 15(a),
where <PI +<P2+<P3 = fixed and <P2 = fixed. The left end (<PI = 0) in Fig. 15(a) corresponds
to the two-phase bonded structure with wedge angles <P2 and <P3. and the right end (<P3 = 0°)
with wedge angles <PI and <P2' The roots then agree with the ones obtained from the eqn
(19) of Bogy (l97la). It is found from Fig. 15(a) that the order O(rl' I) becomes small with
decreasing angle <PI' At <P2/2 :::::::: 64 and 150 yielding a maximum order O(rl'- I) shown in
Figs 9(a) and lO(a). the order O(r" I) behaves like the result shown in Fig. 15(a) with
decreasing angle <PI' In the case where the order of singularity attains a minimum at
<P2/2 = 81S as shown in Fig. 9(b), the variation of root p with the wedge angle <PI is shown
in Fig. 15(b). It is found from Fig. 15(b) that the order O(r p

-
I

) becomes large with
decreasing the angle <PI' At <P2/2 :::::::: 95 yielding a minimum order O(rl'-I) shown in Fig.
lO(b), the order O(rl' I) behaves like the result shown in Fig. 15(b) with decreasing angle
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0.30. -0.85, -030)-G,=G,»G" (b) II-(y., Ii, -Y.. -{i) = (-0.85, -0.30,0.85,

0.30)-G, = G.« G,.

qJl. Consequently, it is found that the order of singularity can be reduced by not equalizing
qJj with qJ3 when G1 = G3 » G2, and equalizing qJ, with qJ3 when G j = G3 « G2·

When G1 = G3 « G2• rootpi in the half-plane attains a minimum at qJ2/2 ~ 8° and the
stress singularity disappears between the angle, qJ2/2, of 28' and 90c (see Fig. 8b). When
the order O(r"-j) yields a maximum at qJ2/2 = 8 as shown in Fig. 8(b), the relation between
the wedge angle qJ I and root P is as shown in Fig. 16.

4.3. Locifor roots pfor structure with qJ\ = qJ3 =/ixed, qJI +qJ2+qJ3 0( 2n

In the case of qJt = qJ3 = 77;/6 shown in Fig. 11, when G I = G3 » G2, rootpt appears over
qJI+qJ2+qJ3 = 142 (qJ2/2 = 41 ), when G, = G,« G2• it appears over qJI+qJ2+qJ3 = 2340

(qJ2/2 = 81'). Also. the order O(rP - I) of singularity tends to become larger as the wedge
angle qJ2 increases. In the case of qJI = qJ3 = n/2 shown in Fig. 12, when G j = G3 » G2, the
second root P2 appears over qJ2/2 = 3.05. when G I = G3 « G2• it appears over qJ2/2 = 38.9".
This root P2 becomes a double root of P2 = 2.00 at qJ2 = 0, i.e. a free-free single half plane.
Hence, when GI = G3 » G2 , it is found that the root P2 rapidly varies with the wedge angle
qJ2' Moreover, root P, attains a minimum at f.(J2/2 = 62.5 . and becomes a double root at
f.(J2/2 = 90°. Also. when G 1 = G3 « G2, root PI gradually varies with qJ2, and becomes a
double root at f.(J2/2 = 90 . The roots in case of qJ2:2 = 90 agree with ones obtained from
eqn (28) of Bogy (1971b). In the case of f.(J1 = f.(J3 = 2n/3 shown in Fig. 13. the second root
P2 has no singularity (P2 = 1.1489) at qJ2 = 0 . and it has a singularity over f.(J2/2 = 0.675°
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whenG, = G)>> Gzandover<pz:2 = 30.55 whenG I = Gj « Gz.Also,whenG, = G3 « Gz,
the order 0(1'1'1 I) of singularity of root PI becomes a smaller as the wedge angle <Pz
increases. For <PI = <P3 = 5n/6 shown in Fig. 14. when G I = G3« G2, the orderO(rP,-I) of
root PI decreases as the wedge angle '-fh increases in contrast to the results illustrated in
Figs 11,12, 13(a) and 14(a). Moreover. the third rootp3 then appears over <P2/2 ~ 3°. The
roots PI and P3 combine at <Pz/2 ~ 16 and become a complex root.

In almost all of these results. it is found that the order O(rP -
I
) of singularity becomes

larger as the wedge angle <Pz increases. However. when the wedge angles of both side
materials are large in G I = G, « Gz. the order becomes smaller as the angle <P2 increases.
In the case where a crack exists in a stitfer material indicated by (a) in Figs 11-14, the
smallest root varies little with the wedge angles of both side materials (its root is 0.2017
when <P I = <p) = n/6. 0.2286 when n :2, 0.2110 when 2n/3 and 0.2250 when 5n/6). That is,
when GI = G)>> Gz and <PI +<Pz+<p, = 2n. the difference of pairs of the wedge angles
does not strongly influence the order of stress singularity in comparison with that of the
mechanical properties. On the contrary. in the case (indicated by (b)) where a crack exists
in a softer material. the smallest root varies with the wedge angles of both side materials
(its root is 0.5111 when <PI = <P1 = n6. 0.7082 when n12, 0.6470 when 2n/3 and 0.6216 when
5n/6). Furthermore. it is seen from results of <P,+<PZ+<P3 = 2n that the order 0(rP- 1

) of
singularity at the tip of a crack existing in the stiff side of two-phase materials becomes
large in comparison with that in soft side. This result agrees with the one well known from
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varying ({J, when ({J, = ({J, = ZITi3. The relation of elastic constants is (a) I-(:x, p, -:x, - P) = (0.85,
0.30, -0.85, -0.30)-G,=G,»G" (b) II-(:x. fl. -:x. -Pl=(-0.85, -0.30,0.85,

0.30)-G, = G;« G"

previous investigations on a crack intersecting with a bimaterial interface (Bogy, 1971b;
Cook and Erdogan 1972; Fenner 1976; Barsoum, 1988).

4.4. Method reducing stress singularity in a Two-phase structure
The method reducing the stress singularity in a two-phase bonded structure is presented

now. Considering two copper-alumina composites with the wedge angles (type 1 : nI2-nI2,
type 2: nI2-n) and the elastic properties shown in Fig. 17 as an example of the two-phase
bonded structure, the method reducing the stress singularity on the basis of plane strain
analysis is discussed. We know from the results of this study that in order to lessen the
stress singularity, it is necessary for the intermediate region to be made from a stiffer
material. Now, the two methods considered to reduce the stress singularity are presented:
method (A) where the third material with softer property in comparison with alumina is
bonded to the free surface of alumina in the copper-alumina composite, and method (B)
where copper is divided into two wedges with the appropriate angles and each divided
wedge is bonded to the both sides of alumina (see Fig. I).

In method (A), materials with elastic properties such as epoxy and steel shown in Fig.
17 are employed as the third material, and the relationship between the wedge angle ({J3 of
those materials and roots is shown in Fig. 18. It is found that root P I holds almost constant,
even if the angle ({J3 varies in the case of the copper-alumina composite with wedge angles
of type 2 (n/2-n). Also, roots PI' P2 and Pl vary little with the angle ({J3 within a range of
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Fig. 18. Relation between roots]J and wedge angle 'I" of third material bonded to alumina, (a) when
'1'1 = '1', = 7[/2. (b) when 'P, = 7[2 and '1', = 7[.

angles: 0° ~ CfJ3 ~ 45 C for PI, 85 ~ CfJ3 ~ 110 for Pc and 1500
~ CfJ3 ~ 1800 for P3 in type 1

and 0° ~ CfJ3 ~ 40° for Pc and 70 ~ CfJ3 ~ 90 C for P3 in type 2 when epoxy is bonded as the
third material. However, the stress singularity does not then decrease. Furthermore, the
second and third roots, P2 and P3, appear in the composite with wedge angles of type 1,
and the third root P3 appears in that of type 2. Hence, this is not an effective method for
reducing the stress singularity.

The relationship in method (B) between the wedge angle CfJ3 and roots is shown in Fig.
19, where the regions occupied by alumina and copper are represented as 02(CfJ2 = nl2 and
n) and as 0, +03(CfJ\ + CfJ3 = nI2), respectively. In the case of a composite structure of type
1, the stress singularity becomes small as the wedge angle CfJ3 increases and disappears in
the range of 29° ~ CfJ3 ~ 61' as shown in Fig. 19(a). Furthermore, a similar tendency is seen
in the case of composite structure of type 2. Consequently, method (B) is effective for
reducing the stress singularity in the two-phase structure.
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'i. CONCLUSIONS

The order of stress singularity in the three-phase bonded structures of n/3-n/3-n/3
and n/2-n/2-n/2 was investigated on the basis of two-dimensional elasticity. Variations of
the order of singularity with material properties were shown on the a23-f323 plane. The order
O(rP - I) of stress singularity tends to increase when the intermediate material in the three­
phase structure is softer than the both side materials, and vice versa. Under the condition
that materials I and 3 are identical, the relation between the wedge angle ({J2 of the
intermediate material and the order of singularity was investigated in two cases of
<p) + <P2 + ({J3 = fixed and <PI = ({J3 = fixed. Also, a relation between the wedge angles of both
side materials and the order of singularity was examined under <PI + ({J2 + ({J3 = fixed and
<P2 = fixed. It is necessary for reducing the order of singularity not to equalize ({J) and
({J3 when G I = G3 » G2 , and to equalize <PI with ({J3 when G I = G3 « G2 . In the case of
G) = G3» G2, <PI + <P2 + ({J3 = 2n and <PI = <P3' i.e. when a crack exists in a stiff material,
the smallest root yielding the most dominant factor for the stress field at the tip of crack
varies little with the wedge angles of both side materials. The results deduced in the present
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paper agree well with results reported by other investigators. Moreover, in the case where
the total angle of the bonded wedge and mechanical properties for each material are fixed,
the way to reduce the stress concentration at the apex in the two-phase structure is presented.
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